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FLOW OF A STREAM OF UNEVENLY HEATED LIQUID
OVER A GAS BUBBLE AT LOW MARANGONI NUMBERS

Yu. K. Bratukhin UDC 532.529.6: 536.25

-The problem of the thermocapillary convection in an unevenly heated liquid near a gas bubble is
solved analytically. Estimates are given for the velocity of drift and the shape of the bubble and
the vortex boundary.

Let a gas bubble of radius a be placed in a liquid which fills the entire space. A constant temperature
gradient VT = A is maintained at infinity. The force of gravity is absent. Shear stresses producing thermo-
capillary convection in the liquid develop under these conditions owing to the temperature dependence of the
coefficient of surface tension « at the surface of the bubble. The bubble itself begins to move. Under steady
conditions the velocity u of this translational motion is constant and is determined in the course of the solu-
tion.

The problem can be formulated as a steady-state problem if one changes to a frame of reference con-
nected with the bubble. In such a system the velocity of oncoming flow of the liquid is equal to the drift velocity
of the bubble with the opposite sign.

In the report it is assumed that the gas in the bubble is thermally nonconducting and its viscosity is
vanishingly small. This allows us not to write the Navier—Stokes equation and the heat-conduction equation
for the gas. However, the pressure q in the bubble must be taken into account in writing the boundary condi-
tions.

The problem will be solved in dimensionless quantities. For this we take the following as the char-
acteristic dimensions: the radius « of the undisturbed bubble for the length |da/dTIAa/7 for the velocity, A
- for the temperature, and |dc/dTIA for the pressure. Then the steady distributions of velocities v, pressures
p, and temperatures T in the liquid are determined by the system of equations

MEyT)v=—7Tp+Av; Vv=0; MPu—+—vvT)=AT. (1)

Here all the quantities are dimensionless; M = ldo/dTI{Aa?/vy) and P = v/ are the Marangoni and Prandtl
numbers. The appearance of the drift velocity u in the heat-conduction equation is connected with the choice
of the reference point of the temperature. One can assume that the motion is already established by the
starting time. Then it is convenient to measure the temperature from the undisturbed temperature of that
point of space at which the bubble is found at the time under consideration upon its continued uniform motion.
The partial derivative with respect to time in the nonsteady equation of heat conduction also gives a term
proportional to u. The corresponding term of the Navier—Stokes equation vanishes in the chosen frame of
reference,

The boundary conditions at the surface of the bubble must be added to the system (1). We take the free
surface of the bubble as impermeable and thermally nonconducting, and therefore the normal components of the
velocity and heat flux and the normal and tangential components of the stresses vanish at the surface. We
write these conditions in a spherical coordinate system r, 8, ¢ with the polar axis parallel to the vector A,
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Fig. 1. Meridional cross sections of bub-
bles in hypothetical liquids of the water type
(curve 1) and the mercury type (curve 2),
The boundary of the steady vortex (dashes)
behind an air bubble in water (solid line) with
M = 0.715 is shown at the center of the figure
at a smaller scale.

We will assume that the bubble is a body of rotation with the axis of symmetry along the polar axis. The
surface of the bubble is given by the equation r = R(§). The function R(#) must be found in the course of the

solution of the problem. We take the coefficient of surface tension as decreasing linearly with temperature.
After transformations [1] we obtain
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Here o = aa/nv is the dimensionless coefficient of surfacetension; 2H = 2R+ 3R RR™ _ cotOR
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the average curvature of the surface [2}; 0, = 1 e + o _ v
R 06 or R
A uniform flow, a constant temperature gradient, and zero pressure are assigned at infinity:
v, = —1ucosf, V= u sin o, T =rcosb, p=0, (3)

We will solve the boundary-value problem (1)-(3) by the method of joined asymptotic expansions [3, 4].
Following this method, we divide the entire space into an outer O(M"i) <r= andaninner 1= r= 0 (M-}
region. The expansions vk, px, and Tx in the inner region (the Stokes expansions) are valid for M~ 0 and
a fixed coordinate r and satisfy Egs. (1) and (2). The boundary conditions (3) do not apply for these expansions.
The expansions v*, p*, and T* in the outer region (the Oseen expansions) are written in the variables p =
Mr, T* = MT*, v* = v+, and p, = Mp* and satisfy the boundary conditions (3) and the equations

(V*V) V¥ = — Tp* 4 AV v* = 0; P(u+ v*T*) = AT*. (4)
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The solutions of the stated problems in the inner and outer regions are the following expressions:

V= Vi -+ MV, - M¥yy; p= Mpy, + Mp,,;
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In the problem under consideration there is no term proportionalto r {the "Stokselet") inthe expressions
for the velocity, owing to which the second approximation in the Stokes problem is absent. Therefore, the
expansion for the velocity proves to be uniformly applicable in the entire space up to the third term.

The equations written above were constructed so as to reduce to zero the mass flux through any surface
including the bubble, These are the only possible expressions. Any other functions will have singularities
of higher order at the origin and consequently will prove not to be joinable with (5). Using Eqs. (5) one can
construct a uniformly applicable composite expansion. With its help we construct the stream function y:
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This expression is reduced to zero not only along the axis of symmetry 6 = 0 and at the bubble surface
r=1+ Mzssz, but also on the curve whose equation is obtained if one equates the curly brackets in (6) to
zero, This equation approximately describes the boundary of the steady vortex behind the bubble., For an air
bubble in water (P = 7.1, oy = 73,000) a vortex appears at Mx = 0.715. The shape for M = 0.715 is shown in
Fig. 1 by a dashed line, The deformation of the bubble (solid line) for the air—water system is negligibly
small. Therefore, the shapes of bubbles in two different hypothetical liquids of the water type (curve 1:
large P and large o) and the mercury type (curve 2: small P but large o) are shown in the figure at a jarger
scale, It is seen that the shape of a bubble in a liquid with a large P is qualitatively similar to the shape of a
bubble moving in water under the effect of the force of gravity, With small P the forward part of the bubble
is flattened while the after part is drawn out.

We note that since the bubble moves uniformly the total force of resistance is equal to zero: The stresses’
produced by surface forces are compensated by viscous forces of friction,



NOTATION

T, temperature; v, velocity; p, pressure; v, coefficient of kinematic viscosity; 5, coefficient of dynamic
viscosity; x, thermal diffusivity; », thermal conductivity; r, 6, ¢, coordinates; «, bubble radius; A, constant
temperature gradient; u, drift velocity; 2H, average curvature of surface; M, Mx, P, a, dimensionless
parameters of problem; differentiation with respect to the coc_)fdinate 6 is denoted by a prime; P;, Legendre
polynomials of order {; o, coefficient of surface tension; ry, 6;, unit vectors of spherical coordinate system.
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VISCOSITY OF A WATER-FLUIDIZED BED

R. B. Rozenbaum and O. M. Todes UDC 532.529.5

The method of damping of oscillations of a ball submerged in a fluidized bed is used to study the
viscosity of the bed.

The rheological properties of an air-fluidized bed have been studied rather extensively and by different
methods. There are experimental data which we obtained [1, 2] allowing one to draw certain conclusions con-
cerning the dependence of the effective viscosity of the bed on the properties of the solid phase,

To clarify the mechanism of the effective viscosity and the laws of its variation it is necessary to study
beds fluidized by different agents, and therefore it is advisable to make measurements in a bed fluidized by
water. These measurements present definite difficulties, since in its rheological properties a strongly
rarefied bed approaches the properties of the fluidizing agent, the viscosity of which is low. Using the method
- which we developed [3], which provides for the motion of bodies in the bed in the region of small Reynolds

TABLE 1. Characteristics of Substances Used for Calibration

1

-3

0 p-107,1 #-10, N ve10%, |Nexpp-10-%,
Substance, Joat t, °C kg/m® izsec/ exp | 2/ coc |kg/m®
Water at 20 1,0 1,005.10-2! 53,5 0,01 55,5

Aqueous solution of sugar

20 at 21 1,08 1,96.10-2 ¢ 40 0,018 43,20
40 at 20 1,18 6,2.10-%2| 25,8 0,053 30,44
60 at 34 1,29 |27,97-10-2 14 0,217 18,06
60 at 30 . 1,29 133,78.10-2: 13,2 0,262 17,03
60 at 25 1,20 |43,86.10-2 11,0 0,340 14,19
60 at 20 1,29 56,5.102 9,5 0,438 12,25
Glycerin 1,24 3,68 4 2,968 4,9
Castor oil 0,95 9,03 2 9,505 1,90
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